Kinetic characterization of compound I formation in the thermostable cytochrome P450 CYP119.

نویسندگان

  • David G Kellner
  • Shao-Ching Hung
  • Kara E Weiss
  • Stephen G Sligar
چکیده

The kinetics of formation and breakdown of the putative active oxygenating intermediate in cytochrome P450, a ferryl-oxo-(pi) porphyrin cation radical (Compound I), have been analyzed in the reaction of a thermostable P450, CYP119, with meta-chloroperoxybenzoic acid (m-CPBA). Upon rapid mixing of m-CPBA with the ferric form of CYP119, an intermediate with spectral features characteristic of a ferryl-oxo-(pi) porphyrin cation radical was clearly observed and identified by the absorption maxima at 370, 610, and 690 nm. The rate constant for the formation of Compound I was 3.20 (+/-0.3) x 10(5) m(-1) s(-1) at pH 7.0, 4 degrees C, and this rate decreased with increasing pH. Compound I of CYP119 decomposed back to the ferric form with a first order rate constant of 29.4 +/- 3.4 s(-1), which increased with increasing pH. These findings form the first kinetic analysis of Compound I formation and decay in the reaction of m-CPBA with ferric P450.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics.

Cytochrome P450 enzymes are responsible for the phase I metabolism of approximately 75% of known pharmaceuticals. P450s perform this and other important biological functions through the controlled activation of C-H bonds. Here, we report the spectroscopic and kinetic characterization of the long-sought principal intermediate involved in this process, P450 compound I (P450-I), which we prepared ...

متن کامل

X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative.

The cytochrome P450 enzyme CYP119, its compound II derivative, and its nitrosyl complex were studied by iron K-edge x-ray absorption spectroscopy. The compound II derivative was prepared by reaction of the resting enzyme with peroxynitrite and had a lifetime of approximately 10 s at 23 degrees C. The CYP119 nitrosyl complex was prepared by reaction of the enzyme with nitrogen monoxide gas or wi...

متن کامل

Hole Hopping through Tryptophan in Cytochrome P450

Electron-transfer kinetics have been measured in four conjugates of cytochrome P450 with surface-bound Ru-photosensitizers. The conjugates are constructed with enzymes from Bacillus megaterium (CYP102A1) and Sulfolobus acidocaldarius (CYP119). A W96 residue lies in the path between Ru and the heme in CYP102A1, whereas H76 is present at the analogous location in CYP119. Two additional conjugates...

متن کامل

Structural Adaptability Facilitates Histidine Heme Ligation in a Cytochrome P450

Almost all known members of the cytochrome P450 (CYP) superfamily conserve a key cysteine residue that coordinates the heme iron. Although mutation of this residue abolishes monooxygenase activity, recent work has shown that mutation to either serine or histidine unlocks non-natural carbene- and nitrene-transfer activities. Here we present the first crystal structure of a histidine-ligated P450...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 12  شماره 

صفحات  -

تاریخ انتشار 2002